

# C. U. SHAH UNIVERSITY, WADHWAN CITY.

Faculty of: Science & Life sciences

Course: Bachelor of Science(Microbiology)

Semester: II

Subject Code: MIM203-1C Subject Name: Cell Biology

|          | v     | Subjec<br>t Code  | ec Subject Name | Teaching<br>hours/<br>Week |      |   |                     | Evaluation Scheme/ Semester |                |                                  |                       |              |                                |              |              |              |       |
|----------|-------|-------------------|-----------------|----------------------------|------|---|---------------------|-----------------------------|----------------|----------------------------------|-----------------------|--------------|--------------------------------|--------------|--------------|--------------|-------|
| Sı<br>No |       |                   |                 | T<br>h                     | Tu P |   | Credi<br>t<br>hours | Credi<br>t<br>Points        | Continuous and |                                  | End Semester<br>Exams |              | Tutorial / Internal Assessment |              | End Semester |              | Total |
|          |       |                   |                 |                            |      |   |                     |                             | Ma<br>rks      | Marks                            | Mar<br>ks             | Duratio<br>n | Mark<br>s                      | Duratio<br>n | Mark<br>s    | Duratio<br>n |       |
| 3        | MAJOR | MIM<br>203-<br>1C | Cell Biology    | 3                          | -    | 2 | 5                   | 4                           | 10<br>10<br>05 | Assignment<br>Quiz<br>Attendance | 50                    | 2            | 50                             | 2            | 50           | 2            | 100   |

## AIM:

- Basic concepts related to cell and its function.
- Acquaint the basic concept of cell organelles.
- Gain basic knowledge regarding cell signaling.
- Learn basic concept about protein sorting and transport.

## **COURSE CONTENTS**

# **Course Outline for Theory**

| UNIT | COURSE CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TEACHING<br>HOURS |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
| I    | •Structure and organization of Cell: Cell Organization – Eukaryotic (Plant and animal cells) and prokaryotic, Plasma membrane: Structure and transport of small molecules, Cell Wall: Eukaryotic cell wall, Extra cellular matrix and cell matrix interactions, Cell-Cell Interactions - adhesion junctions, tight junctions, gap junctions, and plasmodesmata (only structural aspects) Mitochondria, chloroplasts and peroxisomes, Cytoskeleton: Structure and organization of actin filaments, association of actin filaments with plasma membrane, cell surface protrusions, intermediate filaments, microtubules |                   |  |  |
| II   | •Nucleus: Nuclear envelope, nuclear pore complex and nuclear lamina, Chromatin – Molecular organization, Nucleolus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 05                |  |  |
| Ш    | • <b>Protein Sorting and Transport:</b> Ribosomes, Endoplasmic Reticulum – Structure, targeting and insertion of proteins in the ER, protein folding, processing and quality control in ER, smooth ER and lipid synthesis, export of proteins and lipids, Golgi Apparatus – Organization, protein glycosylation, protein sorting and export from Golgi Apparatus, Lysosomes.                                                                                                                                                                                                                                          |                   |  |  |
| IV   | • <b>Cell Signaling:</b> Signaling molecules and their receptors, Function of cell surface receptors, Pathways of intra-cellular receptors – Cyclic AMP pathway, cyclic GMP and MAP kinase pathway.                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                |  |  |

• Signaling molecules and their receptors, Function of cell surface receptors, Pathways of intra-cellular receptors – Cyclic AMP pathway, cyclic GMP and MAP kinase pathway

#### **Course Outline for Practical**

| SR. NO | COURSE CONTENT                                                                                                                |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1      | Study a representative plant and animal cell by microscopy                                                                    |  |  |  |  |  |  |
| 2      | Study of the structure of cell organelles through electron micrographs                                                        |  |  |  |  |  |  |
| 3      | Study of the structure of cell organelles through electron micrographs                                                        |  |  |  |  |  |  |
| 4      | Demonstration of the presence of mitochondria in striated muscle cells/ cheek epithelial cell using vital stain Janus Green B |  |  |  |  |  |  |
| 5      | Study of polyploidy in Onion root tip by colchicine treatment                                                                 |  |  |  |  |  |  |
| 6      | Identification and study of cancer cells by photomicrographs                                                                  |  |  |  |  |  |  |
| 7      | Identification and study of cancer cells by photomicrographs                                                                  |  |  |  |  |  |  |
| 8      | Identification and study of cancer cells by photomicrographs                                                                  |  |  |  |  |  |  |
| 9      | Identification and study of cancer cells by photomicrographs                                                                  |  |  |  |  |  |  |
| 10     | Study of nucleus                                                                                                              |  |  |  |  |  |  |

#### **TEACHING METHODOLOGY:**

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)
- Teaching through laboratory work

## **LEARNING OUTCOME:**

- Expand the microbiology knowledge using various fundamental aspects of different branches of sciences.
- To gain knowledge about contribution of scientist in microbiology filed
- Obtain significant knowledge about sterilization methods.
- Understanding the importance of laboratory work and laboratory safety
- To gain a knowledge about an application of microorganism in different field.
- Acquire knowledge about types of glassware and their calibration
- To understand the working system of various microscope

Arrangement of lectures duration and practical session as per defined credit numbers:

| Units    |        | Duration<br>Hrs.) | Cre    | ation of<br>edits<br>mbers) | Total<br>Lecture<br>Duration | Credit<br>Calculation |  |
|----------|--------|-------------------|--------|-----------------------------|------------------------------|-----------------------|--|
|          | Theory | Practical         | Theory | Practical                   | Theory+<br>Practical         | Theory+<br>Practical  |  |
| Unit – 1 | 15     |                   |        |                             |                              |                       |  |
| Unit – 2 | 05     | 30                | 3      | 1                           | 45+30                        | 3+1                   |  |
| Unit – 3 | 15     | 30                | 3      | 1                           | 43+30                        | 3+1                   |  |
| Unit – 4 | 10     |                   |        |                             |                              |                       |  |
| TOTAL    | 45     | 30                | 3      | 1                           | 75                           | 4                     |  |

# **Evaluation:**

| Theory Marks | Practical Marks | Total Marks |  |  |
|--------------|-----------------|-------------|--|--|
| 75           | 25              | 100         |  |  |

# **REFERENCE BOOKS:**

- 1. . Hardin J, Bertoni G and Kleinsmith LJ. (2010). Becker's World of the Cell. 8th edition. Pearson.
- 2. **Karp G. (2010) Cell and Molecular Biology**: Concepts and Experiments. 6th edition. John Wiley & Sons. Inc
- 3. **De Robertis, EDP and De Robertis EMF.** (2006). Cell and Molecular Biology. 8th edition. Lipincott Williams and Wilkins, Philadelphia
- 4. **Cooper, G.M. and Hausman, R.E.** (2009). The Cell: A Molecular Approach. 5 th Edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.